- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Wenyu (2)
-
Barber, Rina Foygel (1)
-
Chun, Kelli‐Jean (1)
-
Drton, Mathias (1)
-
Wang, Y Samuel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Prior work has shown that causal structure can be uniquely identified from observational data when these follow a structural equation model whose error terms have equal variance. We show that this fact is implied by an ordering among conditional variances. We demonstrate that ordering estimates of these variances yields a simple yet state-of-the-art method for causal structure learning that is readily extendable to high-dimensional problems.more » « less
-
Chen, Wenyu; Chun, Kelli‐Jean; Barber, Rina Foygel (, Stat)In regression problems where there is no known true underlying model, conformal prediction methods enable prediction intervals to be constructed without any assumptions on the distribution of the underlying data, except that the training and test data are assumed to be exchangeable. However, these methods bear a heavy computational cost—and, to be carried out exactly, the regression algorithm would need to be fitted infinitely many times. In practice, the conformal prediction method is run by simply considering only a finite grid of finely spaced values for the response variable. This paper develops discretized conformal prediction algorithms that are guaranteed to cover the target value with the desired probability and that offer a trade‐off between computational cost and prediction accuracy. Copyright © 2018 John Wiley & Sons, Ltd.more » « less
An official website of the United States government
